Computer Physics Communications 60 (1990) 329-344
North-Holland

329

A review of pseudorandom number generators

F. James
CERN, CH-1211 Geneva 23, Switzerland

Received 2 May 1990

This is a brief review of the current situation concerning practical pseudorandom number generation for Monte Carlo
calculations. The conclusion is that pseudorandom number generators with the required properties are now available, but the
generators actually used are often not good enough. Portable Fortran code is given for three different pseudorandom number
generators, all of which have much better properties than any of the traditional generators commonly supplied in most

program libraries.

PROGRAM SUMMARY

Title of program: PSEUDORAN
Catalogue number: ABTK

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Computer for which the program is designed: It should give the
same results on any computer with a Fortran 77 compiler, and
has been tested on Apollo 3500 and Apollo 10000 (RISC)
under Sr10 Unix, Cray X-MP under Unicos, IBM 3090 under
VM /CMS /XA, and Vax 8600 under VMS

Programming language used: Fortran 77
No. of lines in combined program and test deck: 367

Keywords: random numbers, pseudorandom, uniform distribu-
tion, long period, independent subsequences

Nature of physical problem
Any Monte Carlo calculation requiring uniform pseudorandom
numbers.

Method of solution

Three different methods are proposed, each of which gives
independent pseudorandom number sequences with very good
properties.

Restrictions on the complexity of the problem

The generators proposed here all produce 32-bit floating-point
numbers uniform between zero and one. The simplest genera-
tor proposed has a period of about 10'®, which could
conceivably be too short for some exceptional calculations, but
the others have much longer periods.

Typical running time

The speed of these generators is comparable to, and in some
cases faster, than traditional hand-coded generators. Timings
are given in the long write-up of the article. They could of
course be speeded up further at the cost of making them
nonportable.

Unusual features of the program

These generators are completely portable (both the code and
the numbers produced), and are suitable for parallel and vector
processing as well as traditional applications.

0010-4655 /90 /$03.50 © 1990 — Elsevier Science Publishers B.V. (North-Holland)

330 F. James / A review of pseudorandom number generators

LONG WRITE-UP
1. General considerations
1.1. The motivation and scope of this paper

Physicists often need very good random number generators for Monte Carlo calculations, but seldom
feel the need to spend any considerable effort to assure themselves of the quality of the generators they
use. Unfortunately, even though the generators available at most computer centres were considered good
when they were first installed, it is unlikely that a generator of twenty or even ten years ago will continue
to meet the requirements of today’s increasingly long and complex calculations. Indeed the history of
Monte Carlo computation has been marked, from the earliest days right up to the present, by physicists
making the painful discovery that their calculations are unreliable because the local random number
generator did not have the properties required of it. 1 will spare many readers from unpleasant
recollections by not citing the many internal reports devoted to the revelation that the local “official
random number generator” is not random enough.

Recent progress in both theoretical understanding and practical implementation of random number
generators has been such that it is now possible to find an appropriate generator available off the shelf for
nearly any practical computation. The purpose of this review is to summarize the requirements for a good
generator, and to give examples of generators fulfilling these requirements. It is up to the individual
physicists to make sure that the one they use (and preferably the default at their computer centre) is
appropriate for their calculations.

Only uniform generators are covered here. There exist in addition an enormous number of techniques
for generating random numbers according to other distributions, for example Gaussian, Poisson, binomial,
exponential, etc. Most of these techniques require a good uniform generator underneath.

1.2. The three types of generators

Random number generators for Monte Carlo calculations can be classified according to the three types
of numbers generated:

® Truly random numbers are unpredictable in advance and must be produced by a random physical
process, such as radioactive decay. Series of such numbers are available on magnetic tape or published
in books, but they are extremely clumsy to use and are generally insufficient in both number and
accuracy for serious calculations. They are not discussed here any further.

® Pseudorandom numbers are produced in the computer by a simple numerical algorithm, and are
therefore not truly random, but any given sequence of pseudorandom numbers is supposed to appear
random to someone who doesn’t know the algorithm. These are the most commonly used and are
discussed below.

® Quasirandom numbers are also produced by a numerical algorithm, but are not designed to appear to
be random, but rather to be distributed as uniformly as possible, in order to reduce the errors in Monte
Carlo integration. They are not appropriate for all Monte Carlo calculations, but can be highly
advantageous where appropriate. These are not discussed in this paper, but will be the subject of a
future paper.

1.3. Desirable properties of a random number generator

The first property given below (good distribution) is important for all calculations. The other properties
are not always needed, but a good general purpose generator should possess them all.

F. James / A review of pseudorandom number generators 331

1. Good distribution. For pseudorandom numbers, this means good randomness. For quasirandom
numbers, the desired quality is uniformity. The exact meaning of these terms in the context of this paper is
discussed below.

2. Long period. Both pseudorandom and quasirandom generators always have a period, after which
they begin to generate the same sequence of numbers over again. In any particular calculation, it is
dangerous to come anywhere near exhausting the period, especially for pseudorandom generators. In the
early days it was believed that a long period was sufficient also to guarantee a good distribution, but this is
now known not to be true in general. Traditional pseudorandom generators are based on a single integer
“seed”, which means that the period is limited to the number of different states that can be represented in
one computer word. For practical reasons, two bits are usually lost (for positivity and to avoid even
integers), so for a 32 bit computer a simple generator can have a maximum period of 2** or about 10°.
Although it is easy to achieve this maximum, it is no longer enough for many present day problems.
Traditional methods can be extended, even on 32-bit computers, to give periods equal to the number of
states representable in 60 bits. Some modern methods have periods much longer than 2°; these methods
will be referred to as VLP (very long period) methods.

3. Repeatability. There are really two aspects:

® For testing and development, it may be necessary to repeat a calculation with exactly the same random
numbers as in the previous run. Nearly all generators do this by default, the only exception being those
few that introduce an element of true randomness by initializing to an external device like the system
clock.

® A somewhat more tricky case, again arising in program testing, is to be able to repeat part of a job
without redoing the whole thing. For example, in event simulation, if event number 368 provokes an
exception, one wants to be able to study it again without regenerating the first 367 events. As a general
rule, this requires recording the state of the generator at the beginning of each event, which for simple
generators means only remembering one number, the seed. More complex generators require storing a
larger amount of information; one of the generators recommended below needs a vector of 100 fullword
numbers to define its state at any moment, although only one 32-bit integer is required to initialize it.

4. Long disjoint subsequences. For large problems, particularly those being solved by a large team of
physicists simultaneously, it is extremely convenient to be able to perform independent subsimulations
whose results can later be combined assuming statistical independence. None of the traditional generators
allows this to be done conveniently. The traditional technique for continuing a calculation is to record the
value of the “seed”, giving the current state of the generator, at the end of each subcalculation, and feed
that into the next subcalculation to restart the generator where it left off. This technique does not allow
one subcalculation to start before the previous one has finished, and also requires considerable inconveni-
ent bookkeeping and perhaps interteam communication. Some of the generators proposed below solve this
problem.

5. Portability. This means not only that the code should be portable (i.e. in a high-level language like
Fortran), but that it should generate exactly the same sequence of numbers on different machines, in order
to verify that the programs give the same results on different machines, at least to within the machine
accuracy. Of course, certain kinds of calculations, in particular those involving branches which depend on
the results of floating-point calculations, may give very different results due to different hardware
arithmetic accuracy, even if the random numbers are rigorously identical, so the comparison may not work
for programs of this kind.

332 F. James / A review of pseudorandom number generators

6. Efficiency. This was considered very important in the early days, but with the kind of computations
being performed now, both the computer time and memory space taken by random number generation are
increasingly insignificant and can almost always be neglected. In fact, the way random number generators
are traditionally implemented, as Fortran functions returning one random number per call, the CPU time
is usually dominated by the time to make the function call, so the actual calculation time for the
generation is seldom of any importance.

If CPU time for random number generation is a problem, there are only two ways to get around it: (1)
by coding the random number generator inline, or (2) by implementing the generator as a subroutine
which returns an array of random numbers at each call. Method (1) may be worthwhile in specialized
applications, but may not be convenient in big programs where the random generator is called from many
places. Method (2) is always to be recommended since the penalty to the user who can handle only one
number at a time is small compared with the gain to the clever user.

Moreover, it i1s important to note that in vector computers, even if the time spent in the generator is
negligible, the above techniques can still result in enormous overall timing improvements, since otherwise a call
to the random generator in a loop will prevent any vectorization of the loop.

1.4. Manufacturer-supplied generators

It has been traditional to use pseudorandom number generators supplied by the manufacturers of the
local computer. There are many reasons for this, but most of them are no longer valid. The main reason
was probably blind faith in the superior technical expertise of the manufacturer and the belief that a good
generator must be written in assembler and exploit particular hardware features of the machine in order to
be efficient. Many users are also influenced by the vague feeling that a sequence can be random only if it is
produced in a mysterious way, coded in an unknown language whose source is not available.

Given the current state of the art, there is practically no reason to use manufacturer’s software for
random number generation, the possible exception being those (supercomputers) which offer good
generators and compilers which produce in-line code. On the other hand, even better (but not faster)
generators are now available to anyone in Fortran, offering in addition portability, which no manufacturer
offers.

2. Pseudorandom numbers
These are the general-purpose random numbers traditionally used for most Monte Carlo calculations.
2.1. Testing good distributions

Zaremba [1] has pointed out that

As far as pseudorandom numbers are concerned, the traditional term “tests of randomness™ is a
misnomer. Surely, in contrast to their name, the object of such tests is not the random origin of the
sequences, since this would amount to testing a hypothesis known to be false.

Indeed, pseudorandom numbers are not truly random, and it turns out to be very difficult if not
impossible to make a mathematically rigorous definition of pseudorandomness (See, for example, Knuth
[2] who has a good discussion of this philosophical point).

Nevertheless, we somehow have to express the fact that pseudorandom numbers should appear to be
truly random, even if they are not, and for want of a better word, we shall call this property
“randomness”, not to be confused with the more usual definition, used for example by Zaremba, which we

F. James / A review of pseudorandom number generators 333

distinguish by the name “ true randomness”. More concretely, we take “randomness” in this sense to mean
that a sequence of pseudorandom numbers should have the same probability of passing a “statistical test”
as truly random numbers would have. (Not better!) A statistical test may be based on the value of any
function of the sequence of pseudorandom numbers. It is sufficient that the expected distribution of that
value be known (or calculable numerically) for a truly random distribution, then by considering the value
of the function for the given pseudorandom sequence, compared with the known expected distribution of
that value for truly random numbers, one obtains a confidence level for the test. If many tests are applied
and the confidence levels are calculated correctly, and if the tests are independent, the confidence levels
should be uniformly distributed between zero and one if the pseudorandom generator is “good”. The
formal difficulty arises mostly from the fact that the number of possible tests is uncountably infinite, and
in addition they are of course not all independent.

Over the years, considerable experience has indicated what kinds of tests are likely to find the
weaknesses of typical generators, and modern tests are much more stringent than most of the older ones.
Modern generators are expected to pass all the old tests as well as those tests which traditional generators
are known to fail. Probably the most extensive presentation of pseudorandom number testing is given by
Knuth {2], but should be updated by the more severe tests giving in ref. [3]. A good example of how to
apply such tests systematically is ref. [4]. Random number testing will not be further discussed here, except
to mention that any pseudorandom generator likely to have a “lattice structure” (see below) should be
subjected to the “spectral test”, a simple example of which is given in ref. {5].

2.2. Pseudorandom generation methods (simple generators)

We define a simple generator as one for which the maximum period is limited by the number of states
that can be represented in one computer word (where a computer word is defined as the entity upon which
the local computer likes to perform its integer arithmetic). Thus, as mentioned above, for the popular 32
bit computers, simple generators are limited to a period of about 10°. The general purpose generators
recommended below combine two or more simple generators to attain a longer period and better
distribution.

In recent years, three classes of simple generators have been used most extensively. These are generally
known as multiplicative linear congruential (MLCG), Fibonacci, and shift register (also known as Taus-
worthe) generators. They all have severe weaknesses, but whenever it is known how to get around them,
the weaknesses are known as “ theoretical understanding”.

2.2.1. MLCG :

The multiplicative linear congruential generator, first used in 1948 by D.H. Lehmer, is one of the oldest,
and probably still the best simple generator, even though it has a well understood weakness. In the basic
MLCG method, each successive integer is obtained by muitiplying the previous one by a well chosen
multiplier, optionally adding another constant, and throwing away the most significant digits of the result:

s;+1=1(as;+¢) mod m

where a is the well chosen multiplier and m is usually equal to or slightly smaller than the largest integer
that can be represented in one computer word. The constant ¢ can be chosen equal to zero, which
simplifies the method somewhat and produces sequences about as good as any other, but then an exact
zero cannot be generated, and the choice of both a and m may depend on ¢. The integer seeds s, must be.
converted to floating-point numbers in the range (0,1) by dividing by m.

Marsaglia [6] discovered and explained the basic weakness of this method: If d-tuples of such numbers
are used to represent points in d-dimensional space, then these points have a lattice structure, that is they
all lie on a certain number of hyperplanes, far less than the largest possible number which would be

334 F. James / A review of pseudorandom number generators

expected of a truly random sequence. Since it has been known for a long time how to get sequences of
maximum period (the necessary and sufficient conditions are given, for example, in ref. [2]), the search for
good multipliers is essentially reduced to maximizing the number of hyperplanes, for simple MLCG
generators. The so-called “spectral test” [5] is the best way of analyzing the hyperplane structure of any
MLCG.

The basic MLCG method should be portable when written in a language like Fortran, but in its
simplest expression it requires multiplying rather long integers, and many implementations make use of the
convenient peculiarity of many arithmetic units which simply throw away the most significant digits when
an integer overflow occurs. Such code is of course not portable, but I'Ecuyer [4] shows how to write this in
a guaranteed portable way, even when m is not a power of two.

Some famous multipliers

Even though, in the words of Niederreiter [7], “There is no such thing as a universally optimal multiplier”,
we list here a few of the better known multipliers which have been used in simple MLCGs, with comments
as to how good they are now generally considered to be. It should be borne in mind that all the methods
given below, except (7), are limited to a period of less than = 10° so none are good enough for long
calculations. Except where noted, all the multipliers given below are used with ¢ = 0.

1. a=23, m=10® + 1: This is the original formula used by Lehmer in 1948, and is not very good by
today’s standards, although the higher order correlations are not as bad as for the following generator. The
constants were chosen mainly to exploit hardware peculiarities, which was important in those days.

2. a= 65539, m=2%: This is the infamous RANDU, supplied by IBM in the early days of their 360
series, and was based on a theoretical expression which showed that this multiplier should produce the
smallest possible serial correlations. Unfortunately, it turns out to have catastrophic higher-order correla-
tions, which many users have observed. We now know that any multiplier congruent to 5 mod 8 (that is,
whose binary representation ends in ...101) would have been better, but this was not known at the time.

3. a=69069, m = 2**: This popular multiplier has been used in many generators, probably because it
was strongly recommended in 1972 by Marsaglia. In particular, it is the multiplier in RN32, a generator
proposed by James [8] for applications which must be portable but do not require very long sequences. It is
also the multiplier for the Vax generator MTHSRANDOM, where it is used with ¢ = 1. It is in fact quite
good for such a small multiplier, its main weakness showing up only in 6 or more dimensions, but
according to some criteria, it is far from optimal (see, for example ref. [2], p. 104, and ref. [7], p. 1026). Its
best property is that it is easy to remember.

4. a=7°=16807, m =2 — 1: This generator was also developed by IBM for its system/ 360, where it
is known as SURAND. It was proposed on the basis of the state of the art in 1968, just after the discovery
of hyperplanes by Marsaglia, and although acceptable for most calculations, it is surely not the best
multiplier, probably not even as good as 69069.

5. a=1664525, m = 2*%: This is the best multiplier for m = 2%, according to the criteria of Knuth [2].
It is used in the INMOS Transputer Development System (IMS D700D).

6. a=742938285, m=2% —1: According to the criteria of P’Ecuyer [4], this is the best simple
algorithm, but is not easily made portable. His best “portable” constants (see RANECU below) are
a = 40014, m = 2147483563, and a = 40692, m = 2147483399.

F. James / A review of pseudorandom number generators 335

7. a=5%, m=2: This is a traditional CDC generator, making use of the 48-bit integer arithmetic
used on their 60-bit machines. The long word gives a long period (= 10'®) and very good distribution. Do
not trust the low-order bits however.

2.2.2. Fibonacci

A Fibonacci series is one in which each element is the sum of the two preceding elements. A Fibonacci
random number generator is a generalization in which each number is computed by performing some
operation on the two preceding numbers, the usual operations being addition, subtraction, and the
“exclusive-or” operation. Since simple Fibonacci generators are not very good, one always uses lagged
Fibonacci sequences, in which each number is the result of an arithmetic or logical operation between two
numbers which have occurred somewhere earlier in the sequence, not necessarily the last two:

!

s;= (5;_,0s,_,) mod m,

where O is some binary or logical operation, and p and ¢ are the lags, defined such that p > g. There is
very little theory about the distributions of such pseudorandom sequences, but one knows how to calculate
the period, and it is possible to generate quite long sequences in this way. Marsaglia gives a good reason
why © should be ordinary addition or subtraction, but not exclusive-or, because under the exclusive-or
operation, a bit in a given position in the result depends only on the two bits in the same position in the
two operands, whereas addition and subtraction produce some actual mixing of the bits.

The basic theoretical result concerning generators of this type is that if p and g are chosen among the
set given ref. [2], then the period is (27 — 1)(2”~!). One interesting feature of Fibonacci generators is that
they can work (even portably) directly with floating-point representations of numbers, without the need to
convert integers. Examples are given below.

In spite of the extensive lack of theoretical understanding, Fibonacci generators are the basis of the
generators recommended by both Knuth [2] and Marsaglia [9]. The latter is RANMAR, described and
recommended below.

2.2.3. Shift register or tausworthe

This class of generators is based on the same formula as lagged Fibonacci generators, but with m = 2,
so that only individual bits are generated, which are then collected into words, making use of a shift
register, whence the name. The operator © is invariably the exclusive-or, which leaves these generators
open to the copious criticism of Marsaglia [3,10], who gives examples of bad generators of this type. They
have, however, been the subject of considerable interest, and there seems to be no proof that a good
generator cannot be based on this method. In particular, people at IBM [11,12] have produced such
generators which although not portable, are very fast, have an arbitrarily long period, and have so far
performed well in tests.

2.3. Improving simple generators

2.3.1. General techniques

The need for pseudorandom number generators of useful period greater than 10° is obvious from the
fact that there are now several models of widely available computers which can generate that many
numbers in a few minutes. If we assume that computer cycle times will not descend much below a
nanosecond in the coming years, it is reasonable to aim for good generators with useful periods of the
order of the number of nanoseconds in a year, or about « X 10'6, Since 2%° = 10'® is somewhat larger than
this limit, it should be sufficient to combine two 32-bit generators if it can be done in such a way as to get
the equivalent of a 64-bit generator.

336 F. James / A review of pseudorandom number generators

It is not entirely obvious how to improve a bad generator. Probably the most common mistake is to
think that correlations like the Marsaglia effect in MLCG are due only to the “regular” way that the
random numbers are used (a fixed number of them per loop), and so . things should improve if we
occasionally throw away a few numbers. Of course the primary effect of such a technique is to shorten the
period rather than lengthen it, but apart from this, such a technique can be expected to improve the
randomness only if the decision when to throw away a number is not based on the generator itself. This
should be obvious since any attempt to use a bad generator to improve itself will introduce modifications
which will be correlated with the very defect one is trying to eliminate. The exact outcome may be hard to
predict, but one should hardly be surprised if it makes things worse instead of better. Considerations such
as these lead to the following guidelines for improving a simple generator:

@ Do not throw away or waste random numbers in order to improve a generator. This mainly shortens the
period.

® Do not use the simple generator itself in the algorithm to improve it. Introduce some new randomness
by using a different (hopefully independent) random number generator, even if it is not very good.

There are two commonly used methods for improving a generator by using a second generator, where
one can show that the new generator will be more random than the original provided the two generators
are independent.

® Shuffling uses the second generator to choose a random order for the numbers produced by the first
generator. This is done by first filling a buffer of a given size from the first generator, then using the
second to choose one of these numbers, replacing it by the next in the first sequence. Such a technique
is particularly useful for quasirandom numbers, where the original sequence has some property such as
equi-distribution which one wants to preserve globally but disturb locally. It is not very efficient for
pseudorandom numbers since it does not use much of the randomness of the second sequence, all of the
actual numbers coming from the first.

@ Bit-mixing actually combines the numbers in the two sequences using some logical or arithmetic
operation. If the two original sequences are denoted by s and ¢, then the new sequence r is given by
r,=s5,;0t,, where © was traditionally always the exclusive-or operation, but for reasons given above in
connection with Fibonacci generators, ordinary addition or subtraction, modulo one, is now preferred.

2.3.2. Extensions to particular algorithms

In addition to the general techniques mentioned above, most simple generators allow intrinsic exten-
sions which will improve their distributions at the expense of added computation time and space. For
example, the popular MLCG generator can be extended from

5,41 =(as;+¢) mod m
to

s,+1=(as;+ bs;_; +c) mod m
which is known to increase the maximum number of Marsaglia hyperplanes to the number which would be
obtained for the simpler formula in half the number of dimensions. To use the second formula requires

carefully choosing two multipliers @ and b. If this is still not good enough, further improvement can be
obtained by adding still more terms to the formula and finding additional good multipliers.

2.3.3. Very long period (VLP) methods

Techniques of the type described above necessarily involve an increase of computation time in order to
lengthen the period, with the time increasing like the log of the period for long periods. This is acceptable
for attaining modest improvements, but a new class of algorithms is needed for very long periods.

F. James / A review of pseudorandom number generators 337

The general technique for VLP generators (for example, RANMAR and ACARRY, described below) is
as follows:

@ An internal table is set up, containing a large number of seeds (typically between ten and a few
hundred), and the values of a few indices (typically two) pointing to seeds in the table, are also
initialized.

® A pseudorandom number is generated by combining only those seeds corresponding to the current
values of the indices.

® The seeds just used are updated as in simple methods, and the indices are incremented to point to other
seeds.

The amount of computation involved in such a method is only about twice as much as for the very
simplest methods, but the period is now limited not by the number of states representable in one or two
words, but in the entire table, which can be made as large as necessary. For simplicity of use, the original
initialization of the seed table is usually based on a single integer supplied by the user, which starts a
simple MLCG generator. On the other hand, if it may be required to restart the generation from any
arbitrary point, then the full seed table at that point must be saved, along with the index values.

3. Acceptable pseudorandom generators
3.1. The McGill generator super-duper

In the mid 1970s the need for generators of longer period for 32-bit computers was already becoming
apparent, and this gave rise to the first widely distributed combined generator, written by Marsaglia and
co-workers at McGill University. It combines a MLCG and a shift-register generator, and is written in
IBM assembler, so is not portable, but is now used at many IBM sites. In the CERN Program Library it is
known as RNDM2. It is packaged in the traditional way, as a function returning one random number at a
time, and is initialized by two 32-bit integer seeds which must be chosen with care, so it is not easy to
generate simultaneous independent sequences.

This is by far the best of any of the traditional generators commonly used on IBM mainframes today,
but Marsaglia now suggests that in the assembler code, the “exclusive-or” operation for combining the
generators be replaced by a simple “add” instruction. Even then it will not be quite as good as those
described below, and is of course not portable.

3.2. RANECU: the algorithm of Ecuyer

L’Ecuyer [4] describes the current state of the art in MLCG methods and shows how to make portable
generators by doing integer arithmetic in such a way that both operands and results are guaranteed to stay
within the range of 32-bit (or 16-bit) computers. He finally recommends a method which combines two
simple MLCG’s for 32-bit computers, and three simple MLCGs for 16-bit machines. The periods are
=~2x 10" and = 10", respectively.

For maximum period, the different values of m in one generator must be the largest relatively prime
numbers which can fit in one word, and for portability the multipliers must be less than Vm . L’Ecuyer [4]
shows how to find the best constants satisfying these constraints and gives the actual Pascal code to
implement the mehtods. (The fact that they are given in Pascal should not be taken as an indication that
they are intended only for toy applications. A Fortran adaptation is given here.)

By traditional standards, this generator is relatively slow, the 32-bit version requiring for each number
generated two integer divisions, six integer multiplications, and several additions, of which three are
conditional. However, on all machines I have tried, the pure calculation is comparable with the time to set

338 F. James / A review of pseudorandom number generators

up the function call alone, so if implemented such that each call returns a vector of random numbers, it
becomes about as fast as traditional hand-coded algorithms (some timings are given below for those
interested).

I see only two very minor drawbacks to this method. The least important is that the numbers generated
on different machines are not bit-identical, but are only equal to the accuracy of the machine arithmetic.
This is because they are normalized by multiplying by the inverse of a very large odd integer, and this
inverse cannot be represented exactly in binary. The other small problem is that it is not very convenient
for generating long disjoint subsets, although I’Ecuyer does indicate how it can be done by calculating
values of a' for large and well-separated values of i. He gives a reference where some values are tabulated.

The following Fortran code is the generator recommended by I’Ecuyer for 32-bit machines, translated
from Pascal and adapted to generate an array of numbers in one call:

SUBROUTINE RANECU (RVEC,LEN)
Portable random number generator proposed by I’Ecuyer
in Commun. ACM 31 (1988) 743
slightly modified by F. James, 1988, to generate a vector
of pseudorandom numbers RVEC of length LEN
DIMENSION RVEC(*)
SAVE ISEED1,ISEED2
DATA ISEEDI1,ISEED2 / 12345, 67890 /

oNoNoNe]

DO 100 I= 1, LEN
K = ISEEDI1 /53668
ISEED1 = 40014 * (ISEED1 — K * 53668) — K * 12211
IF (ISEED1 .LT. 0) ISEED1 = ISEED1 + 2147483563

K = ISEED?2 /52774
ISEED2 = 40692 » (ISEED2 — K * 52774) — K * 3791
IF (ISEED2 .LT. 0) ISEED2 = ISEED2 + 2147483399

1Z = ISEED1 - ISEED2
IF (1Z LT.1) I1Z = 1Z + 2147483562

RVEC(I) = REAL(IZ) * 4.656613E-10
100 CONTINUE
RETURN

ENTRY RECUIN(IS1,IS2)
ISEED1 = IS1

ISEED2 = 1S2

RETURN

ENTRY RECUUT(IS1,IS2)
IS1 = ISEED1

IS2 = ISEED2

RETURN

END

L’Ecuyer gives convincing evidence that the numbers generated are very well distributed.

F. James / A review of pseudorandom number generators 339

3.3. RANMAR: the algorithm of Marsaglia, Zaman and Tsang

This generator [9], is the first of a new generation of portable VLP (very long period) methods. It has a
period of 2'* = 2 x 10%, is completely portable, giving bit-identical results on all machines with at least
24-bit mantissas in the floating-point representation (i.e. all the common computers of 32 bits or more). It
satisfies very stringent tests, even though the only precise theoretical understanding is the knowledge of the
period. It is fast enough (somewhat faster than RANECU), largely because it works internally in
floating-point representation, rendered portable by clever coding techniques which are somewhat unusual,
but perfectly well-defined Fortran.

A most exceptional property of this generator is the extreme simplicity of generating independently
disjoint sequences. The generator must be initialized by giving one 32-bit integer (in the original version,
four smaller integers), each value of which gives rise to an independent sequence of sufficient length for an
entire calculation. This means that in a collaboration between different physicists, each physicist can be
assigned one number between zero and 9999 as the last four decimal digits of the initiator, and he will be
assured of not overlapping the sequences of any other, even though he still has about 90000 possibilities
for the other digits at his disposal for independent initialization. That is, the program can generate about
900 million different subsequences, each one very long (average length = 10%%),

On the other hand, there is a small price to pay for the exceptionally long period: The complete
specification of the state of the generator at a given point (for example to be able to regenerate a given
event in the middle of a calculation) requires one hundred and two full words (the contents of the
COMMON block RASET1 in the listings below). This contrasts with the one word (two words) necessary
for a MLCG of period = 10° (= 10'®).

The algorithm is a combination of a Fibonacci sequence (with lags of 97 and 33, and operation
“subtraction plus one, modulo one”) and an “arithmetic sequence” (using subtraction). The “arithmetic
sequence” has not yet been mentioned here, because it is of little interest by itself, and is not used in many
standard generators, but is claimed to be good enough when combined with another method, like the
lagged Fibonacci, which is already almost good enough. The combining of the two sequences is again done
with the operation “subtraction plus one, modulo one”, and all operations are carried out in floating-point
assuming at least 24-bit mantissas. The starting table of 97 values is initialized using a combination of a
lagged Fibonacci method using three lags, and a MLCG using a = 53, m = 169.

The Fortran code given below is essentially that given by Marsaglia and Zaman [9], except that the
present version returns a vector of numbers rather than just one.

SUBROUTINE RANMAR (RVEC,LEN)
C Universal random number generator proposed by Marsaglia and Zaman
C in report FSU-SCRI-87-50
slightly modified by F. James, 1988, to generate a vector
of pseudorandom numbers RVEC of length LEN
and making the COMMON block include everything needed to
specify completely the state of the generator.
DIMENSION RVEC(*)
COMMON /RASET1 /U(97),C,CD,CM,197,J97

oNoNoNe!

O

DO 100 IVEC = 1, LEN

UNI = U(197)-U(J97)

IF (UNI .LT. 0.) UNI = UNI + 1.
U(197) = UNI

197 = 197-1

340 F. James / A review of pseudorandom number generators

IF (197 .EQ. 0) 197 = 97

J97 = J97-1

IF (J97 .EQ. 0) 197 =97
C=C-CD

IF (C.LT.0)C=C+CM
UNI = UNI-C

IF (UNI .LT. 0.) UNI = UNI + 1.
RVEC(IVEC) = UNI
100 CONTINUE
RETURN
END

The initialization routine given below is also slightly modified from the original version given in ref. [9].
(The original form of RSTART as it appeared in FSU-SCRI-87-50 required four small integers for
initialisation; the adaptation given here and renamed RMARIN simplifies somewhat the initialization,
accepting one integer between zero and 900000000 rather than four smaller integers.)

Some implementation hints: In the form given here, RANMAR cannot know if RMARIN was in fact
called to perform the necessary initialization. In order to remain strictly portable, this can be fixed only if
RMARIN is incorporated as an entry point into RANMAR, in which case RANMAR could recognize
(through the use of a variable set in a DATA statement) when the user had failed to initialize it, and in
that case perform an initialization with some default seeds, thereby making the generator more convenient
for general users. The implementation of entry points is standard Fortran 77 and portable. Note also that
if RMARIN is incorporated as an entry point in RANMAR, the COMMON block is no longer needed,
but if it is removed, those variables must be declared in a SAVE statement. Other possible implementation
options include providing entry points for inputting and outputting the entire seed table for restarting, or a
simpler (but longer) restarting procedure based on counting the number of numbers generated since the
last call to RMARIN. All the above features are incorporated into the code PSEUDORAN distributed by
the CPC Program Library, but only the basic ideas of the initialization are illustrated by the following
code listing:

SUBROUTINE RMARIN(IJKL)
C Initializing routine for RANMAR, must be called before
C generating any pseudorandom numbers with RANMAR. The input
C value should be in the range: 0 < = IJKL < = 900 000 000
COMMON /RASET1 /U(97),C,CD,CM,197,J97
C This shows correspondence between the simplified input seed IJKL

C and the original Marsaglia-Zaman seeds LJ,K,L
C To get standard values in Marsaglia-Zaman paper,
C (I=12,J=134, K=56, L=78)put IJKL = 54217137

1J = IJKL /30082

KL = IJKL — 30082 * 1J

1= MOD(J /177, 177) + 2

J=MOD(J, 177) + 2

K = MOD(KL /169, 178) + 1

L = MOD(KL, 169)

PRINT ’(A,I15,414)’,” RANMAR INITIALIZED: ’, IJKL,I,J,K,L
DO21=1,97

S=0.

F. James / A review of pseudorandom number generators 341

T=35
DO 31J=1,24
M = MODMCD(I * J,179) * K, 179)
=]
1=K
K=M

L =MOD(53 « L + 1, 169)
IF (MOD(L * M,64) .GE. 32) S=S+ T

T=05xT
2 U =S

C = 362436./16777216.

CD = 7654321./16777216.

CM = 16777213./16777216.

197 = 97

J97 =33

RETURN

END

w

3.4. ACARRY: the algorithm of Marsaglia and Zaman

The most recent effort of Marsaglia and friends [13,14] is a whole class of VLP generators known as
add-and-carry. 1 will refer to this class of generators generically as ACARRY, but the particular variation
which I propose here is actually subtract-and-borrow, and the name of the subroutine I propose is
RCARRY. The algorithm looks very much like lagged Fibonacci, but with the occasional addition of an
extra bit, according to whether or not the Fibonacci sum was greater than one. The basic formula is:

x,=(x,_,xx, +c)mod b

where r > s are the lags, and ¢ is a carry bit, equal to zero unless the sum was greater than b, in which case
it isa one in the least significant bit position. The word size b can be chosen = 2 in which case it generates
random bits, or a larger number (usually a power of two) for generating longer numbers. In the example
proposed below, we take b = 2** to generate 32-bit floating-point numbers with 24-bit mantissas.

As with the Fibonacci method, r and s are chosen from a set of magic numbers for which the method is
known to yield a very long period. And this algorithm also requires storing the previous r seeds. For
b =2, a convenient choice is r =24, s =10, which gives a period only a factor of 48 smaller than the
number of different states that can be represented by 24 24-bit numbers, which is (224)?*. That is, the
period for the generator given below is =~ 2° or =~ 10'"". The state of the generator at any time can be
specified by the values of 24 24-bit integers plus two small integers and the value of the carry bit, which
can easily be packed into a 25th word.

Only the generator proper is shown below. In addition, it is necessary to initialize the vector of 24
floating-point seeds as well as the two indices 124 and J24, as in RMARIN, and the starting value of
CARRY must also be initialized, but it can be started with zero. The code PSEUDORAN distributed by
the CPC Program Library performs also the initialization and offers entry points for inputting and
outputting the state of the generator at a given time. The normal initialization is either by default (which
will of course always yield the same sequence) or by inputting an integer (24 bits or less) each value of
which starts a very long (= 10'*°) subsequence which will not overlap with any other.

SUBROUTINE RCARRY (RVEC,LENYV)
C Portable Pseudorandom Number Generator with period of
C about (1/48) * 2% *»24)* »24=2* *570=10* » 171

342

oNoNp!

100

F. James / A review of pseudorandom number generators

author: F. James, CERN, 1989
algorithm due to: G. Marsaglia and A. Zaman

DIMENSION RVEC(LENYV)
DIMENSION SEEDS(24)
PARAMETER (TWOP24 = 16777216.)
PARAMETER (TWOM24 = 1. /TWQOP24)
the basic generator algorithm only

DO 100 IVEC =1, LENV
UNI = SEEDS(124) — SEEDS(J24) — CARRY
IF (UNI .LT. 0.) THEN

UNI=UNI+1.0

CARRY = TWOM24

ELSE
CARRY = 0.

ENDIF

SEEDS(124) = UNI

24=124 -1

IF (124 .EQ. 0) [24 =24

J24 =324 -1

IF (J24 .EQ. 0) J24 =24
RVEC(IVEC) = UNI
CONTINUE

RETURN

END

4. Conclusions

4.1. Timing

The times given in table 1 are for Fortran loops calling the indicated generator alone. For RANECU,
RANMAR and RCARRY, two times are given: one for one call returning 1000 numbers, and the other for
1000 calls returning one number each. The other generators can only return one number per call, so the

Table 1
Pseudorandom number generation time
Generator log, Time in ps per random number
period Cray IBM Vax Apollo Apollo

X-MP 3090 8800 10000 3500
RNDM 30 2.0 0.7 7.0 24 30.0
RN32 30 2.0 2.6 5.0 2.4 42.0
MTHS$RANDOM 30 - - 5.0 - -
RANF 46 0.07 - - - -
Super-Duper 60 - 1.3 - - -
RANECU (1000 /call) 60 25 2.6 9.0 5.5 71.0
RANECU (1 /call) 60 4.1 4.5 16.0 7.0 84.0
RANMAR (1000 /call) 144 1.1 1.2 5.0 34 130.0
RANMAR (1 /call) 144 4.5 34 12.0 9.1 148.0
RCARRY (1000 /call) 568 0.8 0.8 3.0 2.0 46.0
RCARRY (1 /call) 568 2.7 31 15.0 438 65.0

F. James / A review of pseudorandom number generators 343

Table 2

Properties of some Pseudorandom Number Generators

Generator Randomness Portability Approx. Needed to Needed to Disjoint
period initialize restart sequences,

[wd] [wd] no. X length

traditional unreliable poor 10° 1 1 sequential

super-duper acceptable none 10'® 2 2 sequential

RANECU good good 10'8 2 2 (10° x10%) ®

RANMAR good good 104 1 100 10° x 10

RCARRY good good 1017 1 25 10° x 10"

RANECU can make independent subsequences, but not conveniently.

times are given for 1000 calls. The times given are not accurate (or even repeatable) to more than about
10%. Super-duper is in IBM assembler only. The implementation of RNDM (CERN Program Library) is
very computer-dependent, but times are given to allow users to compare with a generator which they may
already be using. RN32 [8] is a nearly portable Fortran function generating the same numbers on different
machines.

The Fortran code for RANECU, RANMAR, and RCARRY was absolutely identical on all machines,
and no attempt was made to optimize the code for any particular computer (on some computers,
considerable improvement in speed can be attained by customizing the code, but our goal here is rather
portability). It can be seen that in most cases there is not much difference in timing from one generator to
another, the major exception being RANF which is exceptionally fast because the Fortran compiler
produces in-line object code. The better generators are not much slower (and in some cases quite a bit
faster!) than the mediocre ones, and a factor of two or three can usually be gained by returning several
numbers in one call.

4.2. Summary of basic properties

The most important properties of both traditional and newer recommended pseudorandom generators
can be summarized in table 2. All generators produce 32-bit floating-point numbers uniformly distributed
between zero and one. The unit “1 wd” means one 32-bit word. The figures given as powers of ten are only
approximate.

4.3. Other considerations

4.3.1. Higher precision or shorter word length

The particular algorithms given here are for computers with word length of 32 or more bits, where
32-bit precision is assumed to be sufficient. If higher precision is required (this should be very rare), then
all of the algorithms must be extended to produce longer numbers. For the MLCG, which works internally
with integer arithmetic, one must not only find multipliers appropriate for larger bases, but also use tricks
like the one shown here to do extra-length integer arithmetic and floating-point conversion. Algorithms
based directly on floating-point arithmetic are simpler to extend, since double precision floating-point
arithmetic is standard in Fortran.

For 16-bit computers, ’Ecuyer [4] gives a good algorithm based on three seeds.

4.3.2. Exact zeros
The routines RANMAR and RCARRY produce floating-point numbers in the range from zero to one,
excluding one, but including exact zeros. Although zeros occur on average only once per 224 numbers, they

344 F. James / A review of pseudorandom number generators

may be highly bothersome, especially if the subsequent calculations involve for example taking the
logarithm of the random number. In addition, the results may be sensitive to the fact that no number will
be generated between zero and 27 ?*. Both these problems may be solved elegantly by the following
technique.

® Just before the statement RVEC(IVEC) = UNI, include the following code:

IF (UNI .EQ. 0.) THEN
UNI = U(J97) * 2 * * — 24 ! (for RANMAR)
or UNI=SEEDS(I24) *x TWOM24 ! (for ACARRY)
IF (UNI .EQ. 0.) UNI =2 * x — 48
ENDIF

This produces a uniform distribution of numbers between 27 and 27 % with no numbers smaller than
274

4.4. Recommendations

1. Old-fashioned generators like RNDM, RN32, MTHSRANDOM, SURAND, and RANDU should
be archived and made available only upon special request for historical purposes or in situations where the
user really wants a bad generator. The user who is not sure what he needs should not by default get a
generator known to be deficient.

2. The standard form for a pseudorandom number generator should be a subroutine returning an array
of random numbers rather than a function returning one number. This is mainly for efficiency, but is also
good Fortran programming, since random number generators always have side effects and are not
therefore true Fortran functions.

3. RANECU, RANMAR and ACARRY shouid be available at all computer centres, and the “default”
generator, where one is provided, should be one of these. That is, even users who persist in an old calling
sequence such as RR = RNDM(DUMMY) should now get numbers produced by a modern generator
unless they invoke a special library which may provide historical numbers.

4, If computer time for random number generation is critical, use a generator coded or compiled
in-line.

References

[1] S.K. Zaremba, SIAM Rev., 10 (1968) 303.
[2] D.E. Knuth, Semi-numerical algorithms, vol. 2 in: The Art of Computer Programming, 2nd ed. (Addison-Wesley, Redding,
MA, 1981).
[3] G. Marsaglia, A current view of random number generators, in: Computer Science and Statistics: The Interface, L. Billard, ed.
(Elsevier, Amsterdam, 1985).
[4] P. ’Ecuyer, Commun. ACM 31 (1988) 742.
[5] G. Marsaglia, The structure of linear congruential sequences, in: Applications of Number Theory to Numerical Analysis
{Academic, New York, 1972).
[6] G. Marsaglia, Proc. Nat. Acad. Sci. WA 61 (1968) 25.
[71 H. Niederreiter, Bull. Am. Math. Soc. 84 (1978) 957.
[8] F. James, Rep. Prog. Phys. 43 (1980) 1145.
[9] G. Marsaglia, A. Zaman and W.-W. Tsang, Stat. Prob. Lett. 9 (1990) 35.
[10] G. Marsaglia and L.-H. Tsay, Linear Algebra Appl. 67 (1985) 147.
[11] S. Kirkpatrick and E.P. Stoll, J. Comput. Phys. 40 (1981) 517.
{12] Private communication (1988).
[13} G. Marsaglia and A. Zaman, SIAM J. Sci. Stat. Comput., to be published.
[14] G. Marsaglia, B. Narasimhan and A. Zaman, Comput. Phys. Commun. 60 (1990) 345, this issue.

